Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(44): 27121-27127, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36342321

RESUMO

During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light-matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses.

2.
Rev Sci Instrum ; 92(4): 045110, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243486

RESUMO

We report the adaptation of an electron-photon coincidence detection scheme to the multibunch hybrid mode of the synchrotron radiation source BESSY II (Helmholtz-Zentrum Berlin). Single-event-based data acquisition and evaluation, combined with the use of relative detection times between the coincident particles, enable the acquisition of proper coincidence signals from a quasi-continuous excitation pattern. The background signal produced by accidental coincidences in the time difference representation is modeled using the non-coincident electron and photon spectra. We validate the method by reproducing previously published results, which were obtained in the single bunch mode, and illustrate its usability for the multibunch hybrid mode by investigating the photoionization of CO2 into CO2 + B satellite states, followed by subsequent photon emission. The radiative lifetime obtained and the electron binding energy are in good agreement with earlier publications. We expect this method to be a useful tool to extend the versatility of coincident particle detection to arbitrary operation modes of synchrotron radiation facilities and other excitation sources without the need for additional experimental adjustments.

3.
J Phys Chem A ; 124(26): 5352-5358, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32463669

RESUMO

Electronic excitations in the valence shell of Ne clusters were studied by fluorescence spectroscopy. The measured fluorescence excitation functions contain information about the nature and number of excitonic states and the mean cluster size of the produced size distribution. Mean cluster sizes were determined by comparing surface and bulk contributions using a multidimensional fitting algorithm, with good agreement to commonly used scaling laws. The influence of different size distributions, which were not considered in previous investigations, on homogeneous noble gas cluster jets is implemented in the proposed model. The present work is the first approach using fluorescence spectroscopy for the determination of the mean size of Ne cluster jets created by supersonic expansion.

4.
Rev Sci Instrum ; 90(9): 093104, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575280

RESUMO

The coincident detection of particles is a powerful method in experimental physics, enabling the investigation of a variety of projectile-target interactions. The vast majority of coincidence experiments is performed with charged particles, as they can be guided by electric or magnetic fields to yield large detection probabilities. When a neutral species or a photon is one of the particles recorded in coincidence, its detection probability typically suffers from small solid angles. Here, we present two optical assemblies considerably enhancing the solid angle for photon detection in the extreme ultraviolet to visible spectral range. The efficiency and versatility of these assemblies are demonstrated for electron-photon coincidence detection, where electrons and photons emerge from fundamental processes after photoexcitation of gaseous samples by synchrotron radiation.

5.
Phys Rev Lett ; 123(4): 043202, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491235

RESUMO

It is commonly accepted that the magnitude of a photoelectron circular dichroism (PECD) is governed by the ability of an outgoing photoelectron wave packet to probe the chiral asymmetry of a molecule. To be able to accumulate this characteristic asymmetry while escaping the chiral ion, photoelectrons need to have relatively small kinetic energies of up to a few tens of electron volts. Here, we demonstrate a substantial PECD for very fast photoelectrons above 500 eV kinetic energy released from methyloxirane by a participator resonant Auger decay of its lowermost O 1s excitation. This effect emerges as a result of the Fano interference between the direct and resonant photoionization pathways, notwithstanding that their individual effects are negligibly small. The resulting dichroic parameter has an anomalous dispersion: It changes its sign across the resonance, which can be considered as an analogue of the Cotton effect in the x-ray regime.

6.
Radiat Prot Dosimetry ; 183(1-2): 32-35, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753692

RESUMO

To identify the precise molecular processes to induce DNA lesions, we attempt a novel spectroscopy of X-ray induced luminescence (XIL) using soft X-ray synchrotron radiation, which is a non-destructive analysis of the reaction intermediates in the elementary reaction pathway of damage induction and self-organized restoration. Using a liquid micro-jet technique to introduce aqueous samples in a vacuum chamber, we measure UV-visible luminescence from nucleotide solution as a function of the soft X-ray energy from the nitrogen to oxygen K-edge region. The XIL intensities for the nucleotide solutions are significantly enhanced in the soft X-ray region (410-530 eV) which is ascribed to the K-shell excitation/ionization of nitrogen atoms in the nucleobases. Furthermore, the XIL spectra do not show any signature of X-ray absorption near-edge structure (XANES) of the nucleobases. This is because the luminescence intensities collected from the integral area of the micro-jet only reflect the quantum yield of luminescence of the absorbed X-ray into UV-visible light irrespective of the absorption cross sections, i.e. of XANES. Thus the present result is the first evidence of luminescence as a result of X-ray absorption of aqueous nucleotides.


Assuntos
DNA/química , DNA/efeitos da radiação , Desoxirribonucleotídeos/química , Desoxirribonucleotídeos/efeitos da radiação , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Luminescência , Nitrogênio/química , Oxigênio/química , Síncrotrons , Água/química , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...